Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells

نویسندگان

  • Seo-Young Lee
  • Hye Bin Noh
  • Hyeong-Taek Kim
  • Kang-In Lee
  • Dong-Youn Hwang
چکیده

The ground-breaking discovery of the reprogramming of somatic cells into pluripotent cells, termed induced pluripotent stem cells (iPSCs), was accomplished by delivering 4 transcription factors, Oct4, Sox2, Klf4, and c-Myc, into fibroblasts. Since then, several efforts have attempted to unveil other factors that are directly implicated in or might enhance reprogramming. Importantly, a number of transcription factors are reported to retain reprogramming activity. A previous study suggested Gli-similar 1 (Glis1) as a factor that enhances the reprogramming of fibroblasts during iPSC generation. However, the implication of other Glis members, including Glis2 and Glis3 (variants 1 and 2), in cellular reprogramming remains unknown. In this study, we investigated the potential involvement of human Glis family proteins, including hGlis1-3, in cellular reprogramming. Our results demonstrate that hGlis1, which is reported to reprogram human fibroblasts, promotes the reprogramming of human adipose-derived stromal cells (hADSCs), indicating that the reprogramming activity of Glis1 is not cell type-specific. Strikingly, hGlis3 promoted the reprogramming of hADSCs as efficiently as hGlis1. On the contrary, hGlis2 showed a strong negative effect on reprogramming. Together, our results reveal clear differences in the cellular reprogramming activity among Glis family members and provide valuable insight into the development of a new reprogramming strategy using Glis family proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

I-5: Fifteen Years after Dolly: The Perspectives on Cellular Reprogramming

s:1202:"It is a truly amazing time to developmental biology. During recent decades, three important breakthroughs have been developed: (i) isolation of stem cells from embryo, (ii) animal cloning by nuclear transfer (NT), and (iii) and induced pluripotent stem cells (iPS). Considering these three approaches of "Cellular Reprogramming", it seems that the required elements for cell therapy now ex...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017